skip to main content


Search for: All records

Creators/Authors contains: "Berg, Danielle A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we quantify the effects of spectral resolution (R) on the measured Lyαproperties and determine the robustness of Lyαtrends measured with different spectrographs. We select 9 galaxies with diverse Lyαproperties from the COS Legacy Archive Spectroscopic SurveY and measure the equivalent width and peak velocities of their Lyαprofiles from their high-resolution spectra (R ∼ 4225–15000). We downgrade these spectra to several lower resolutions (R∼ 800–3500) and re-measure the Lyαproperties. Using these values, we derive the systematic errors and investigate the robustness of Lyαproperties as a function of spectral resolution. We find that equivalent width can be robustly measured at low R. However, the minimal spectral resolution required to obtain robust measurements of the Lyαpeak velocities isR ≳ 2600 (Δv = 115 km s−1).

     
    more » « less
  2. Abstract

    We utilize a sample of 45 local star-forming galaxies (z < 0.18) from the COS Legacy Archive Spectroscopic SurveY (CLASSY) to analyze the N/O versus O/H relationship. Nitrogen and oxygen are ejected into the interstellar medium at different timescales by intermediate-mass and massive stars. Therefore, the N/O abundance ratio with respect to the gas-phase metallicity (O/H) is a powerful tool to improve our interpretation on galaxy formation and evolution. In order to analyze such a relation, we derive the the electron density and temperature for the whole sample, allowing for accurate determinations of N/O and the metallicity. We compare our results with an additional sample of dwarf star-forming galaxies and extragalactic H iiregions. We also analyze the N/O ratio with the stellar mass and star formation rate.

     
    more » « less
  3. Abstract

    Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs. 
    more » « less
  5. Abstract

    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit Heiirecombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii]λ5008, Hβ, [Neiii]λ3870, [Oii]λλ3727, 3729, and [Nev]λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev]/[Neiii] ≡ Ne53, [Oiii]/Hβ, and [Neiii]/[Oii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudythat use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz∼ 0,z∼ 2, and 5 <z< 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.

     
    more » « less
  6. Abstract

    The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals project has observed ∼100 Hiiregions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures (Te) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of −0.037 ± 0.007 dex kpc−1and indicate a relatively small (0.043 ± 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small, and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected forα-process orα-process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside out, with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a singleTemeasurement andTeTerelationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases that increase the measured dispersion up to 0.11 dex.

     
    more » « less
  7. Abstract

    Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range.

     
    more » « less
  8. Abstract Stellar population models produce radiation fields that ionize oxygen up to O +2 , defining the limit of standard H ii region models (<54.9 eV). Yet, some extreme emission-line galaxies, or EELGs, have surprisingly strong emission originating from much higher ionization potentials. We present UV HST/COS and optical LBT/MODS spectra of two nearby EELGs that have very high-ionization emission lines (e.g., He ii λλ 1640,4686 C iv λλ 1548,1550, [Fe v ] λ 4227, [Ar iv ] λλ 4711,4740). We define a four-zone ionization model that is augmented by a very high-ionization zone, as characterized by He +2 (>54.4 eV). The four-zone model has little to no effect on the measured total nebular abundances, but does change the interpretation of other EELG properties: we measure steeper central ionization gradients; higher volume-averaged ionization parameters; and higher central T e , n e , and log U values. Traditional three-zone estimates of the ionization parameter can underestimate the average log U by up to 0.5 dex. Additionally, we find a model-independent dichotomy in the abundance patterns, where the α /H abundances are consistent but N/H, C/H, and Fe/H are relatively deficient, suggesting these EELGs are α /Fe-enriched by more than three times. However, there still is a high-energy ionizing photon production problem (HEIP 3 ). Even for such α /Fe enrichment and very high log U s, photoionization models cannot reproduce the very high-ionization emission lines observed in EELGs. 
    more » « less
  9. ABSTRACT

    We re-examine the extremely metal-poor dwarf galaxy AGC 198691 using a high quality spectrum obtained by the LBT’s MODS instrument. Previous spectral observations obtained from KOSMOS on the Mayall 4-m and the Blue channel spectrograph on the MMT 6.5-m telescope did not allow for the determination of sulfur, argon, or helium abundances. We report an updated and full chemical abundance analysis for AGC 198691, including confirmation of the extremely low “direct” oxygen abundance with a value of 12 + log (O/H) = 7.06 ± 0.03. AGC 198691’s low metallicity potentially makes it a high value target for helping determine the primordial helium abundance (Yp). Though complicated by a Na i night sky line partially overlaying the He i λ5876 emission line, the LBT/MODS spectrum proved adequate for determining AGC 198691’s helium abundance. We employ the recently expanded and improved model of Aver et al., incorporating higher Balmer and Paschen lines, augmented by the observation of the infrared helium emission line He i λ10830 obtained by Hsyu et al. Applying our full model produced a reliable helium abundance determination, consistent with the expectation for its metallicity. Although this is the lowest metallicity object with a detailed helium abundance, unfortunately, due to its faintness [EW(Hβ) < 100 Å] and the compromised He i λ5876, the resultant uncertainty on the helium abundance is too large to allow a significant improvement on the measurement of Yp.

     
    more » « less
  10. null (Ed.)